| Table 2. S | elected geom | ietric parameters | (A, °)    |
|------------|--------------|-------------------|-----------|
| N1-C5      | 1.343 (3)    | C9-C10            | 1.384 (4) |
| N1C6       | 1.455 (3)    | C10-C11           | 1.388 (4) |
| D1C5       | 1.354 (3)    | C11-C12           | 1.376 (5) |
| 01—C1      | 1.477 (3)    | C12—C13           | 1.371 (4) |
| 02—C5      | 1.214 (3)    | C13-C14           | 1.391 (4) |
| 03—C7      | 1.202 (3)    | C15-C16           | 1.506 (3) |
| O4—C7      | 1.339 (3)    | C16C17            | 1.476 (3) |
| O4—C8      | 1.444 (3)    | C17-C18           | 1.333 (3) |
| O5—C16     | 1.218 (3)    | C18—C19           | 1.468 (3) |
| C1—C3      | 1.512 (3)    | C19-C20           | 1.399 (3) |
| C1-C2      | 1.517 (3)    | C19—C24           | 1.402 (3) |
| C1-C4      | 1.524 (3)    | C20-C21           | 1.386 (3) |
| C6—C7      | 1.518 (3)    | C21-C22           | 1.386 (4) |
| C6—C15     | 1.526 (3)    | C22-C23           | 1.382 (4) |
| C8—C9      | 1.505 (3)    | C23C24            | 1.385 (3) |
| C9—C14     | 1.382 (3)    |                   |           |
| C5—N1—C6   | 120.7 (2)    | C10-C9-C8         | 117.9 (2) |
| C5-01-C1   | 119.8 (2)    | C9-C10-C11        | 121.1 (3) |
| C7-04-C8   | 116.8 (2)    | C12-C11-C10       | 119.8 (3) |
| 01-C1-C3   | 102.7 (2)    | C13-C12-C11       | 119.7 (3) |
| 01-C1-C2   | 110.5 (2)    | C12-C13-C14       | 120.5 (3) |
| C3-C1-C2   | 110.3 (2)    | C9-C14-C13        | 120.4 (3) |
| O1-C1-C4   | 110.1 (2)    | C16-C15-C6        | 113.0 (2) |
| C3-C1-C4   | 110.5 (2)    | O5-C16-C17        | 119.6 (2) |
| C2-C1-C4   | 112.4 (2)    | O5-C16-C15        | 120.8 (2) |
| O2-C5-N1   | 124.7 (2)    | C17-C16-C15       | 119.6 (2) |
| 02-C5-01   | 125.4 (2)    | C18-C17-C16       | 125.5 (2) |
| N1-C5-01   | 109.9 (2)    | C17—C18—C19       | 125.6 (2) |
| N1-C6-C7   | 108.2 (2)    | C20-C19-C24       | 118.0 (2  |
| N1-C6-C15  | 113.5 (2)    | C20-C19-C18       | 122.5 (2) |
| C7-C6-C15  | 114.3 (2)    | C24—C19—C18       | 119.5 (2) |
| O3—C7—O4   | 125.2 (2)    | C21-C20-C19       | 120.9 (2  |
| O3-C7-C6   | 124.5 (2)    | C22-C21-C20       | 120.5 (2  |
| O4-C7-C6   | 110.2 (2)    | C23-C22-C21       | 119.2 (2  |
| O4—C8—C9   | 112.0 (2)    | C22-C23-C24       | 120.9 (2  |
| C14-C9-C10 | 118.5 (2)    | C23-C24-C19       | 120.5 (2  |
| C14-C9-C8  | 123.6 (2)    |                   |           |

1 01

Isotropic H atoms were constrained to give N-H 0.90 and C-H 0.95-1.00 Å depending on position, H-C-H 109.5°, aromatic and olefinic H atoms on angle external bisectors and U(H)=  $1.2U_{eq}(C)$ . Data collection and cell refinement: DIF4 (Stoe & Cie, 1992). Data reduction: local programs. Program(s) used to solve structure: SHELXTL/PC (Sheldrick, 1990). Program(s) used to refine structure: SHELXL (Sheldrick, 1994). Molecular graphics: SHELXTL/PC. Software used to prepare material for publication: SHELXL and local programs.

We thank SERC and Pfizer Central Research for financial support.

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: HA1079). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

## References

Clegg, W. (1981). Acta Cryst. A37, 22-28.

- Jackson, R. F. W., Wishart, N., Wood, A., James, K. & Wythes, M. J. (1992), J. Org. Chem. 57, 3397-3404.
- Sheldrick, G. M. (1990). SHELXTL/PC User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1994). J. Appl. Cryst. In preparation.
- Stoe & Cie (1992). DIF4. Diffractometer Control Program. Version 7.04. Stoe & Cie, Darmstadt, Germany.
- Williams, R. M. (1989). In Synthesis of Optically Active  $\alpha$ -Amino Acids. Oxford: Pergamon.

©1994 International Union of Crystallography Printed in Great Britain - all rights reserved

Acta Cryst. (1994). C50, 967-971

p-Methyl-N-(pentafluorobenzylidene)aniline (1), 1,2,3,4-Tetrafluoro-7-methoxyacridine (2), 1,2,3,4,7-Pentafluoroacridine (3) and 3-(p-Methylanilino)-1,2,4-trifluoro-7-methylacridine (4): Four Molecules **Representing Key Stages in the One-Pot** Synthesis of 1,2,3,4-Tetrafluoroacridines by Treating Pentafluorobenzaldehyde with para-Substituted Anilines

A. J. ADAMSON, Y. ARCHAMBEAU, R. E. BANKS AND B. BEAGLEY

Department of Chemistry, University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 1QD, England

M. HELLIWELL

Department of Chemistry, University of Manchester, Manchester M13 9PL, England

R. G. PRITCHARD AND A. E. TIPPING

Department of Chemistry, University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 1QD, England

(Received 3 August 1993; accepted 4 January 1994)

#### Abstract

All of the title compounds,  $C_{14}H_8F_5N$ ,  $C_{14}H_7F_4NO$ ,  $C_{13}H_4F_5N$  and  $C_{21}H_{15}F_3N_2$ , display a characteristic stacking of their  $\pi$  systems in which adjacent members of the stack are related by crystallographic inversion centres. This leads to a particularly efficient mode of packing in which fluorinated rings overlap unfluorinated sections of the molecules at interplanar spacings ranging from 3.40 to 3.51 Å.

### Comment

During the purification of a crude sample of the Schiff base  $C_6F_5CH = NC_6H_4(OCH_3-4)$  [(1) with  $R = OCH_3$ ] obtained by heating pentafluorobenzaldehyde with pmethoxyaniline in boiling *n*-butyl acetate, Flowers & DeFigueredo (1990) isolated a by-product which they concluded was 7,8,9,10-tetrafluoro-2-methoxyphenanthridine on the basis of the results of elemental, NMR and mass spectometric analyses. Their interest centred only on the preparation of Schiff bases of the type C<sub>6</sub>F<sub>5</sub>CH=NAr for mass spectral studies. For our part we wished to compare the mechanism of this intramolecular ring closure with that involved in the production of fluorinated diareno-1,2-diazepines from phenylazo derivatives of fluoroaromatic compounds (Alty, Banks, Fishwick, Pritchard & Thompson, 1984; Alty, Banks, Fishwick & Thompson, 1985).

We prepared the compound thought to be the phenanthridine, but found that the <sup>1</sup>H and <sup>19</sup>F NMR signals could not be assigned unambiguously. The crystal structure determination, described here, showed that the by-product from the reaction of  $C_6F_5$ CHO with  $H_2NC_6H_4(OCH_3-4)$  was in fact 1,2,3,4-tetrafluoro-7-methoxyacridine (2).

Subsequent detailed work on the mechanism of formation of various tetrafluoroacridines [*e.g.* (3)] from pentafluorobenzaldehyde and a range of substituted anilines showed that, rather than the simple ring closure expected, another aniline molecule attacks the *ortho*position in the fluorinated ring, initiating a process which ultimately yields substituted acridines. Full details of the reaction mechanism have been presented by Adamson, Banks & Tipping (1993) and are summarized in the scheme below. Further evidence for the role of the aniline component in the ring closure is given by the formation of compound (4), in which the *para*-F substituent has also been replaced by *p*-methylaniline.





Fig. 1. Molecule (1) including atomic labelling scheme.



Fig. 2. Molecule (2) including atomic labelling scheme [an identical labelling scheme has been used for molecule (3)].



Fig. 3. Crystal packing in (2) showing the type of overlapping  $\pi$  systems seen in all four crystal structures.



Fig. 4. Molecule (4) including atomic labelling scheme.

In connection with the mechanism of acridine formation, the determination of the structure of (1) establishes that Schiff bases of the type  $C_6F_5CH=NC_6H_4R$ -4 prepared in this manner adopt an *E* configuration at the C=N bond.

#### Experimental

The Schiff base [(1) m.p. 412 K] was obtained in 93% yield (after recrystallization from boiling acetone) by stirring penta-fluorobenzaldehyde and p-methylaniline together (1:1 molar

ratio) in dichloromethane at room temperature for approximately 1 h. The fluoroacridines were isolated from reaction mixtures produced by heating pentafluorobenzaldehyde with p-methoxyaniline [(2), m.p. 484 K], p-fluoroaniline [(3), m.p. 438 K] or p-methylaniline [(4), m.p. 512 K] in an inert solvent (n-butyl acetate or, preferentially, toluene or 1,2dichlorobenzene) (Adamson, Banks & Tipping, 1993). All three acridines were sublimed in vacuo then recrystallized from acetone; each one provided a satisfactory elemental analysis (C, H, F, N).

Mo  $K\alpha$  radiation

 $\theta = 23.93 - 37.10^{\circ}$ 

 $\mu = 0.14 \text{ mm}^{-1}$ 

T = 296 K

Colourless

 $R_{\rm int} = 0.034$ 

 $\theta_{\rm max} = 25.0^{\circ}$ 

 $k = -15 \rightarrow 15$ 

3 standard reflections

reflections

monitored every 150

intensity variation: 0.03%

 $l = -7 \rightarrow 7$ 

 $h = 0 \rightarrow 8$ 

Needle

Cell parameters from 25 reflections

 $0.40 \times 0.20 \times 0.10$  mm

 $\lambda = 0.71069 \text{ Å}$ 

#### Compound (1)

Crystal data

C14H8F5N  $M_r = 285.22$ Triclinic  $P\overline{1}$ a = 7.437 (3) Å *b* = 13.176 (4) Å c = 6.210 (2) Å  $\alpha = 92.00 (3)^{\circ}$  $\beta = 96.90 (3)^{\circ}$  $\gamma = 91.76 (3)^{\circ}$ V = 603.4 (7) Å<sup>3</sup> Z = 2 $D_{\rm x} = 1.570 {\rm Mg} {\rm m}^{-3}$ 

Data collection AFC-6S diffractometer  $\omega/2\theta$  scans Absorption correction: empirical  $T_{\rm min} = 0.88, T_{\rm max} = 1.00$ 2308 measured reflections 2126 independent reflections 793 observed reflections  $[I > 3\sigma(I)]$ 

#### Refinement

| Refinement on F           | Weighting scheme b                                        |
|---------------------------|-----------------------------------------------------------|
| R = 0.042                 | measured e.s.d.'s                                         |
| wR = 0.046                | $(\Delta/\sigma)_{\rm max} = 0.10$                        |
| <i>S</i> = 1.75           | $\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$ |
| 793 reflections           | $\Delta \rho_{\rm min}$ = -0.21 e Å                       |
| 201 parameters            | Atomic scattering fa                                      |
| All H-atom parameters     | from Internationa                                         |
| refined except for methyl | for X-ray Crystall                                        |
| H atoms, fixed            | (1974, Vol. IV)                                           |
|                           |                                                           |

| Weighting scheme based on                                  |
|------------------------------------------------------------|
| measured e.s.d.'s                                          |
| $(\Delta/\sigma)_{\rm max} = 0.10$                         |
| $\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$  |
| $\Delta \rho_{\rm min} = -0.21 \ {\rm e} \ {\rm \AA}^{-3}$ |
| Atomic scattering factors                                  |
| from International Tables                                  |
| for X-ray Crystallography                                  |
| (1974, Vol. IV)                                            |

| ag scheme based on<br>red e.s.d.'s<br>$_x = 0.10$<br>$0.15 \text{ e} \text{ Å}^{-3}$<br>$-0.21 \text{ e} \text{ Å}^{-3}$<br>scattering factors<br>International Tables<br>ray Crystallography | Data collection<br>AFC-5S diffrac<br>$\omega/2\theta$ scans<br>Absorption cor-<br>empirical<br>$T_{min} = 0.70$ ,<br>1827 measured |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| ray Crystallography                                                                                                                                                                           | 1676 independ                                                                                                                      |

| AFC-5S diffractometer                      |
|--------------------------------------------|
| $\omega/2\theta$ scans                     |
| Absorption correction:                     |
| empirical                                  |
| $T_{\rm min} = 0.70, \ T_{\rm max} = 1.00$ |
| 1827 measured reflections                  |
| 1676 independent reflections               |
| 1167 observed reflections                  |
|                                            |

 $[I > 3\sigma(I)]$ 

## Refinement

refined

Refinement on FR = 0.078wR = 0.088S = 3.241167 reflections 181 parameters H-atom parameters not

|     | •          |            |             |           |
|-----|------------|------------|-------------|-----------|
|     | x          | v          | z           | $U_{eq}$  |
| F10 | 0.6136 (4) | 0.6027 (2) | 0.0214 (4)  | 0.065 (2) |
| F11 | 0.6590 (5) | 0.8003 (2) | -0.0592 (5) | 0.077 (2) |
| F12 | 0.8344 (5) | 0.9295 (2) | 0.2493 (6)  | 0.085 (2) |
| F13 | 0.9644 (4) | 0.8603 (2) | 0.6410 (5)  | 0.071 (2) |
| F14 | 0.9229 (4) | 0.6655 (2) | 0.7259 (4)  | 0.060 (2) |
| N7  | 0.7687 (6) | 0.4803 (3) | 0.5915 (7)  | 0.060 (3) |
| CI  | 0.7385 (7) | 0.3744 (4) | 0.6225 (9)  | 0.048 (3) |
| C2  | 0.7954 (8) | 0.3409 (4) | 0.8286 (9)  | 0.049 (3) |
| C3  | 0.7748 (8) | 0.2401 (5) | 0.8742 (9)  | 0.055 (3) |
|     |            |            |             |           |

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters  $(Å^2)$  for (1)

 $U_{\text{eq}} = (1/3) \sum_{i} \sum_{j} U_{ij} a_i^* a_i^* \mathbf{a}_i . \mathbf{a}_j.$ 

| C4  | 0.6950 (7) | 0.1705 (4) | 0.7182 (9)  | 0.051 (3) |
|-----|------------|------------|-------------|-----------|
| C5  | 0.6371 (8) | 0.2039 (5) | 0.5171 (10) | 0.058 (3) |
| C6  | 0.6570 (8) | 0.3042 (4) | 0.4644 (10) | 0.056 (3) |
| C8  | 0.7336 (7) | 0.5175 (4) | 0.4128 (10) | 0.048 (3) |
| C9  | 0.7659 (7) | 0.6261 (4) | 0.3783 (9)  | 0.044 (3) |
| C10 | 0.7019 (7) | 0.6651 (4) | 0.1797 (9)  | 0.048 (3) |
| C11 | 0.7236 (8) | 0.7662 (5) | 0.1346 (9)  | 0.054 (3) |
| C12 | 0.8120 (8) | 0.8308 (4) | 0.2907 (9)  | 0.055 (3) |
| C13 | 0.8761 (8) | 0.7958 (4) | 0.4891 (9)  | 0.052 (3) |
| C14 | 0.8552 (7) | 0.6957 (4) | 0.5313 (8)  | 0.044 (3) |
| C15 | 0.6717 (9) | 0.0599 (4) | 0.7710 (10) | 0.079 (3) |

# Table 2. Selected geometric parameters (Å, °) for (1)

| 1.431 (6) | C4-C15                                                                                                                         | 1.514 (7) |
|-----------|--------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1.232 (6) | C8-C9                                                                                                                          | 1.471 (6) |
| 1.390 (7) | C9-C10                                                                                                                         | 1.389 (6) |
| 1.395 (7) | C9-C14                                                                                                                         | 1.391 (7) |
| 1.378 (7) | C12—C13                                                                                                                        | 1.368 (7) |
| 1.364 (7) | C13—C14                                                                                                                        | 1.360 (7) |
| 121.8 (5) | C3-C4-C5                                                                                                                       | 118.4 (6) |
| 116.0 (5) | N7-C8-C9                                                                                                                       | 122.3 (6) |
| 125.3 (5) | C11-C12-C13                                                                                                                    | 120.3 (6) |
| 118.7 (6) |                                                                                                                                |           |
|           | 1.431 (6)<br>1.232 (6)<br>1.390 (7)<br>1.395 (7)<br>1.378 (7)<br>1.364 (7)<br>121.8 (5)<br>116.0 (5)<br>125.3 (5)<br>118.7 (6) |           |

#### **Compound (2)**

Crystal data C<sub>14</sub>H<sub>7</sub>F<sub>4</sub>NO  $M_r = 281.21$ Triclinic PΪ a = 7.366 (7) Åb = 12.411 (2) Å c = 6.312 (2) Å  $\alpha = 100.13 (2)^{\circ}$  $\beta = 94.28 (5)^{\circ}$  $\gamma = 86.69 (4)^{\circ}$  $V = 565.9 (5) \text{ Å}^3$ Z = 2 $D_{\rm r} = 1.650 {\rm Mg m}^{-3}$ 

Cu  $K\alpha$  radiation  $\lambda = 1.5418 \text{ Å}$ Cell parameters from 18 reflections  $\theta = 76.90 - 79.37^{\circ}$  $\mu = 1.29 \text{ mm}^{-1}$ T = 295 KPlate  $0.60 \times 0.40 \times 0.03~\text{mm}$ Yellow

 $R_{\rm int} = 0.048$  $\theta_{\rm max} = 60^{\circ}$  $h = -4 \rightarrow 8$  $k = -13 \rightarrow 13$  $l = -7 \rightarrow 7$ 3 standard reflections monitored every 150 reflections intensity variation: 4.56%

| Weighting scheme based on                                  |
|------------------------------------------------------------|
| measured e.s.d.'s                                          |
| $(\Delta/\sigma)_{\rm max} = 0.0001$                       |
| $\Delta \rho_{\rm max} = 0.34 \ {\rm e} \ {\rm \AA}^{-3}$  |
| $\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$ |
| Atomic scattering factors                                  |
| from International Tables                                  |
| for X-ray Crystallography                                  |
| (1974, Vol. IV)                                            |

 
 Table 3. Fractional atomic coordinates and equivalent
 Refinement isotropic displacement parameters  $(Å^2)$  for (2) Refinement on F

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(1/2)\sum \sum$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 777.****                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     | R = 0.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 |                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $U_{eq}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $= (1/3) \Sigma_i Z_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $a_j U_{ij} a_i^* a_j^* \mathbf{a}_i$                                                                                                                                                                                                                                                                                                                                   | . <b>a</b> <sub>j</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     | wR = 0.052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                               |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | У                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                         | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $U_{eq}$                            | S = 2.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                 |                                                                                  |
| F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.5355 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (3) 0.                                                                                                                                                                                                                                                                                                                                                                  | 0975 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.067 (2)                           | 951 reflect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ions                                                                                            |                                                                                  |
| F2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.5470 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (3) 0.                                                                                                                                                                                                                                                                                                                                                                  | 2984 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.080 (2)                           | 188 param                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eters                                                                                           |                                                                                  |
| F3<br>E4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0969 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (3) U.<br>(3) D.                                                                                                                                                                                                                                                                                                                                                        | /03/(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.082(2)                            | All H-aton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n narameter                                                                                     | 2                                                                                |
| F4<br>07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.8312 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.3828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (3) 0.                                                                                                                                                                                                                                                                                                                                                                  | 3828 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.076(2)                            | All II-atoli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ii parameter                                                                                    | 5                                                                                |
| N10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.8233 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (3) 0.7                                                                                                                                                                                                                                                                                                                                                                 | 7362 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.049 (2)                           | renned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                 |                                                                                  |
| CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.6116 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (4) 0.                                                                                                                                                                                                                                                                                                                                                                  | 3017 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.053 (3)                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |                                                                                  |
| C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.6140 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (5) 0.                                                                                                                                                                                                                                                                                                                                                                  | 3975 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.057 (3)                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |                                                                                  |
| C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.6929 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (5) 0.                                                                                                                                                                                                                                                                                                                                                                  | 6122 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.061 (3)                           | Table 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fractional                                                                                      | 4                                                                                |
| C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.7574 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (5) 0.                                                                                                                                                                                                                                                                                                                                                                  | 7171 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.055 (3)                           | isotr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | onic displa                                                                                     | ı                                                                                |
| C4a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.7561(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.1319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (4) U.<br>(5) O                                                                                                                                                                                                                                                                                                                                                         | 0229 (8)<br>7584 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.047(2)                            | 10011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | opic andpia                                                                                     |                                                                                  |
| C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8931 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.2386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (5) 0.                                                                                                                                                                                                                                                                                                                                                                  | 6672 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.058(3)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U <sub>eq</sub> =                                                                               | -                                                                                |
| C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8241 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.2727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (5) 0.                                                                                                                                                                                                                                                                                                                                                                  | 4498 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.054 (3)                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |                                                                                  |
| C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.7572 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.1982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (4) 0.                                                                                                                                                                                                                                                                                                                                                                  | 3282 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.052 (2)                           | E1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X<br>0.0479 (2)                                                                                 |                                                                                  |
| C8a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.7512 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.0846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (4) 0.                                                                                                                                                                                                                                                                                                                                                                  | 4199 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.046 (2)                           | F1<br>F2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0478(3)<br>0.0448(3)                                                                          |                                                                                  |
| C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.6814 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.0033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (4) 0.                                                                                                                                                                                                                                                                                                                                                                  | 3060 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.048 (2)                           | F3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1842(3)                                                                                       |                                                                                  |
| C9a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.6803 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (4) 0.                                                                                                                                                                                                                                                                                                                                                                  | 4047 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.045 (2)                           | F4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3292 (3)                                                                                      |                                                                                  |
| C10a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8210(7)<br>0.7795(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.0490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (4) 0.<br>(5) 0                                                                                                                                                                                                                                                                                                                                                         | 0407 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.047(2)<br>0.082(4)                | F5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3638 (3)                                                                                      |                                                                                  |
| Ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.7795 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 0.4245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (5) 0.                                                                                                                                                                                                                                                                                                                                                                  | 105 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.002 (4)                           | N10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.3368 (4)                                                                                      |                                                                                  |
| T-1-1-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | for (2)                             | C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1190 (5)                                                                                      |                                                                                  |
| Table 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . Selectea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | geometri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c parame                                                                                                                                                                                                                                                                                                                                                                | ters (A, <sup>-</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jor (2)                             | C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1165 (5)                                                                                      |                                                                                  |
| O7—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.359 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C4a—C9a                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.437 (6)                           | C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1892 (5)                                                                                      |                                                                                  |
| O7-C71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.439 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C5-C6                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.343 (7)                           | C4<br>C4a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.2656 (4)                                                                                      |                                                                                  |
| N10-C4a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.340 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C5-C10a                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.431 (7)                           | C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4125 (5)                                                                                      |                                                                                  |
| N10-C10a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.328 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C6C7                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.427 (7)                           | C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4187 (5)                                                                                      |                                                                                  |
| C1 - C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.322(7)<br>1.417(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $C_{1} = C_{2}$                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.331(7)<br>1.427(7)                | C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3515 (5)                                                                                      |                                                                                  |
| $C_{2}-C_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.425 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C8a-C9                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.393 (7)                           | C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2808 (5)                                                                                      |                                                                                  |
| C3—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.339 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C8a-C10a                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.452 (7)                           | C8a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2715 (4)                                                                                      |                                                                                  |
| C4—C4a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.404 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C9—C9a                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.384 (7)                           | C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1989(5)<br>0.1031(4)                                                                          |                                                                                  |
| C40 N10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C10a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 118 3 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C8a                                                                                                                                                                                                                                                                                                                                                                     | -C9a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 110 0 (4)                           | C3a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.3385 (4)                                                                                      |                                                                                  |
| C4a—1410—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CIUU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     | 0.10/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                 |                                                                                  |
| N10-C4a-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C9a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 122.6 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C4a-C9a-                                                                                                                                                                                                                                                                                                                                                                | -C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 118.5 (5)                           | CTUa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5505 (4)                                                                                      |                                                                                  |
| N10-C4a-<br>C9-C8a-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C9a<br>210a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 122.6 (5)<br>117.0 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C4a—C9a-<br>N10—C10a                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119.5 (4)<br>118.5 (5)<br>123.6 (5) | Table 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Selected g                                                                                      | 30                                                                               |
| C4a=N10=<br>N10-C4a=<br>C9-C8a=C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C9a<br>210a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 122.6 (5)<br>117.0 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C4a—C9a-<br>N10—C10a                                                                                                                                                                                                                                                                                                                                                    | C9<br>aC8a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.5 (4)<br>118.5 (5)<br>123.6 (5) | Table 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Selected g                                                                                      | 30<br>.3                                                                         |
| C9-C8a-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C9a<br>210a<br>.d (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 122.6 (5)<br>117.0 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C4a—C9a-<br>N10—C10                                                                                                                                                                                                                                                                                                                                                     | -C9<br>a-C8a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 119.5 (5)<br>118.5 (5)<br>123.6 (5) | Table 6<br>N10C4a<br>N10C10a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . Selected §                                                                                    | 30<br>.3                                                                         |
| Compoun<br>Crystal da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C9a<br>210a<br>ad (3)<br><i>ta</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 122.6 (5)<br>117.0 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C4a—C9a-<br>N10—C10                                                                                                                                                                                                                                                                                                                                                     | -C9<br>a-C8a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 118.5 (5)<br>123.6 (5)              | Table 6<br>N10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5. Selected §                                                                                   | 30<br>.3<br>.3                                                                   |
| Compoun<br>Crystal da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C9a<br>210a<br>dd (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 122.6 (5)<br>117.0 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C4a-C9a-<br>N10-C10a                                                                                                                                                                                                                                                                                                                                                    | -C9<br>a-C8a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 118.5 (5)<br>123.6 (5)              | Table 6<br>N10C4a<br>N10C10a<br>C1C2<br>C1C9a<br>C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . Selected §                                                                                    | .3<br>.3<br>.3                                                                   |
| $\begin{array}{c} \text{C}_{4a} = \text{M}_{10} \\ \text{N}_{10} = \text{C}_{4a} = 0 \\ \text{C}_{9} = \text{C}_{8a} = \text{C}_{12} \\ \text{Compoun} \\ \text{C}_{13}\text{H}_{4}\text{F}_{5}\text{N} \\ \text{M} = 260 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C9a<br>C9a<br>c10a<br>d (3)<br>ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122.6 (5)<br>117.0 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C4a - C9a - N10 - C10a<br>Mo K $\alpha$ 1                                                                                                                                                                                                                                                                                                                               | -C9<br>a-C8a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 118.5 (5)<br>123.6 (5)              | Table 6           N10C4a           N10C10a           C1C2           C1C9a           C2C3           C3C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . Selected g                                                                                    | 30.3                                                                             |
| $C_{4a} = M_{10} = M_{10} = C_{4a} = C$                                                                                                                                                                                                                               | C9a<br>10a<br>d (3)<br>ta<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 122.6 (5)<br>117.0 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $Mo K\alpha n$ $\lambda = 0.71$                                                                                                                                                                                                                                                                                                                                         | -C9<br>a-C8a<br>radiation<br>069 Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 118.5 (5)<br>123.6 (5)              | Table 6           N10C4a           N10C10a           C1C2           C1C9a           C2C3           C3C4           C4C4a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . Selected g                                                                                    | 3.3<br>.3<br>.4<br>.4                                                            |
| $C_{13} = 10^{-10}$ $N_{10} = C_{4a} = -C$ $C_{7} = C_{8a} = C$ $C_{13} = C_{13} = C_{13}$ $M_r = 269.$ $Triclinic$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C9a<br>210a<br>d (3)<br>ta<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 122.6 (5)<br>117.0 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $Mo K\alpha n$ $\lambda = 0.71$ Cell para                                                                                                                                                                                                                                                                                                                               | -C9<br>a-C8a<br>radiation<br>069 Å<br>umeters from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 118.5 (5)<br>1123.6 (5)<br>m 25     | Table 6           N10C4a           N10C10a           C1C2           C1C9a           C2C3           C3C4           C4C4a           C4aC9a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . Selected §                                                                                    | 3.3.3.4.4.3.4.4.3.4.4.                                                           |
| $C_{13} = 100^{-1}$ $C_{23} = C_{23} = C_{23}$ $Compoun$ $Crystal da$ $C_{13}H_4F_5N$ $M_r = 269.$ $Triclinic$ $P\overline{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | croa<br>croa<br>d (3)<br><i>ta</i><br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 122.6 (5)<br>117.0 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $Mo \ K\alpha \ n$ $Mo \ K\alpha \ n$ $\lambda = 0.71$ Cell para<br>reflect                                                                                                                                                                                                                                                                                             | -C9<br>a-C8a<br>radiation<br>069 Å<br>umeters from<br>ions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m 25                                | Table 6           N10C4a           N10C10a           C1C2           C1C9a           C2C3           C3C4           C4C4a           C4aC9a           C4a-N10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . Selected s                                                                                    | 3.3.3.4.4.3.4.4.1                                                                |
| $C_{13} = 100^{-1}$<br>$C_{13} = 10^{-1}$<br>$C_{13} = 10^{-1}$<br>$M_r = 269^{-1}$<br>$M_r = 269^{-1}$<br>Triclinic<br>$P\bar{1}$<br>$a = 8.270^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | c:9a<br>c:10a<br>d (3)<br><i>ta</i><br>17<br>(5) Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 122.6 (5)<br>117.0 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $Mo \ K\alpha \ n$ $Mo \ K\alpha \ n$ $\lambda = 0.71$ Cell para<br>reflect $\theta = 35.5$                                                                                                                                                                                                                                                                             | -C9<br>a-C8a<br>radiation<br>069 Å<br>meters from<br>ions<br>5-40.85°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m 25                                | Table 6           N10C4a           N10C10a           C1C2           C1C2a           C2C3           C3C4           C4C4a           C4aC9a           C4aC9a           C4a-N10           N10C4a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . Selected s                                                                                    | 3334434                                                                          |
| $C_{13} = 100^{-1}$<br>$C_{13} = 100^{-1}$<br>$C_{13} = 100^{-1}$<br>$C_{13} = 100^{-1}$<br>$M_r = 100^{-1}$ | (5) Å<br>(5) Å<br>(5) Å<br>(5) Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 122.6 (5)<br>117.0 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $Mo \ K\alpha \ n$ $Mo \ K\alpha \ n$ $\lambda = 0.71$ Cell para<br>reflect $\theta = 35.5.$ $\mu = 0.15$                                                                                                                                                                                                                                                               | -C9<br>a-C8a<br>radiation<br>069 Å<br>meters from<br>ions<br>5-40.85°<br>9 mm <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m 25                                | Table 6           N10C4a           N10C10a           C1C2           C1C2a           C2C3           C3C4           C4aC4a           C4aN10           N10C4a-           C9C8aC0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . Selected s                                                                                    | 3334434                                                                          |
| $C_{4a} = (C_{4a} = (C_{4a} = (C_{4a} = C_{4a} $                                                                                                                                                                                                                               | (5) Å<br>(5) Å<br>(5) Å<br>(5) Å<br>(2) Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 122.6 (5)<br>117.0 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $Mo \ K\alpha \ n$ $Mo \ K\alpha \ n$ $\lambda = 0.71$ Cell para<br>reflect $\theta = 35.5$ $\mu = 0.15$ $T = 296$                                                                                                                                                                                                                                                      | -C9<br>a-C8a<br>radiation<br>069 Å<br>meters from<br>ions<br>5-40.85°<br>9 mm <sup>-1</sup><br>K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | m 25                                | Table 6           N10C4a           N10C10a           C1C2           C1C2a           C2C3           C3C4           C4C4a           C4aC9a           C4aN10           N10C4a           C9C8aC0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . Selected s                                                                                    | 3.3.3.4.4.3.4.1.2.1                                                              |
| Compoun<br>Crystal da<br>Crystal da<br>Crystal da<br>C13H4F5N<br>$M_r = 269$ .<br>Triclinic<br>$P\overline{1}$<br>a = 8.270<br>b = 10.721<br>c = 5.995<br>$\alpha = 102.50$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (5) Å<br>(5) Å<br>(5) Å<br>(5) Å<br>(1 (5) Å<br>(2) Å<br>(2) Å<br>(3)°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 122.6 (5)<br>117.0 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C4a-C9a-<br>N10-C10k<br>Mo K $\alpha$ f<br>$\lambda$ = 0.71<br>Cell para<br>reflect<br>$\theta$ = 35.5<br>$\mu$ = 0.15<br>T = 296<br>Needle                                                                                                                                                                                                                             | -C9<br>a-C8a<br>radiation<br>069 Å<br>meters from<br>ions<br>5-40.85°<br>9 mm <sup>-1</sup><br>K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | m 25                                | Table 6           N10C4a           N10C10a           C1C2           C1C2           C1C3a           C2C3           C3C4           C4C4a           C4aC9a           C-Campout                                                                                                                                                                                                                                                                                      | . Selected g<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                   | 3334434                                                                          |
| Compoun<br>Crystal da<br>Crystal da<br>Crystal da<br>C13H4F5N<br>$M_r = 269$ .<br>Triclinic<br>$P\overline{1}$<br>a = 8.270<br>b = 10.721<br>c = 5.995<br>$\alpha = 102.55$<br>$\beta = 92.60$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d (3) $ta$ (5) Å (5) Å (2) Å (2) Å (3)° (4)°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 122.6 (5)<br>117.0 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $Mo \ K\alpha \ p$ $N10-C10k$ $Mo \ K\alpha \ p$ $\lambda = 0.71$ $Cell \ para reflect$ $\theta = 35.5, \mu = 0.15$ $T = 296$ $Needle$ $0.30 \times C$                                                                                                                                                                                                                  | -C9<br>a-C8<br>a-C8a<br>radiation<br>069 Å<br>mmeters from<br>ions<br>5-40.85°<br>9 mm <sup>-1</sup><br>K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m 25                                | Table 6           N10C4a           N10C10a           C1C2           C1C2           C1C3a           C2C3           C3C4           C4C4a           C4aC9a           C4aC9a           C4aC9a           C4aC9a           C4aC9a           C4aC9a           C4aC9a           C4aC9a           C9C8aC0           Compoun           Compoun                                                                                                                                                                                                                                                                                                                                                          | . Selected g<br>. Selected g<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1   | 33344344                                                                         |
| Compount<br>Cy=C4a<br>C9-C4a<br>Crystal da<br>C <sub>13</sub> H <sub>4</sub> F <sub>5</sub> N<br>$M_r = 269$ .<br>Triclinic<br>$P\overline{1}$<br>a = 8.270<br>b = 10.721<br>c = 5.995<br>$\alpha = 102.57$<br>$\beta = 92.60$<br>$\gamma = 83.30$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \text{(S)} a \\ \text{(C)} a \\ \text{(C)} a \\ \text{(C)} a \\ \text{(C)} b \\ (C$ | 122.6 (5)<br>117.0 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C4a-C9a-<br>N10-C10k<br>Mo K $\alpha$ f<br>$\lambda$ = 0.71<br>Cell para<br>reflect<br>$\theta$ = 35.5<br>$\mu$ = 0.15<br>T = 296<br>Needle<br>0.30 × C<br>Yellow                                                                                                                                                                                                       | -C9<br>a-C8<br>a-C8a<br>radiation<br>069 Å<br>immeters from<br>ions<br>5-40.85°<br>9 mm <sup>-1</sup><br>K<br>0.20 × 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m 25                                | Table 6         N10C4a         N10C10a         C1C2         C1C2         C1C2         C1C2         C1C3         C3C4         C4C4a         C4aC9a         C4aN10         N10C4a         C9C8aC9         Compound         Crystal data                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . Selected s<br>. Selected s<br>. 1<br>. 1<br>. 1<br>. 1<br>. 1<br>. 1<br>. 1<br>. 1            | 30<br>.3<br>.3<br>.3<br>.3<br>.3<br>.3<br>.4<br>.4<br>.4<br>.4<br>.4<br>.4<br>.1 |
| Compount<br>$C_{13}H_4F_5N$<br>$M_r = 269$ .<br>$C_{13}H_4F_5N$<br>$M_r = 269$ .<br>$Triclinic P\overline{1}a = 8.270b = 10.721c = 5.995\alpha = 102.55\beta = 92.60\gamma = 83.30V = 515.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} \text{(S)} a \\ \text{(C)} a \\ (C$ | 122.6 (5)<br>117.0 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{aligned} &\text{Mo } K\alpha \text{ is } \\ &\text{Mo } K\alpha \text{ is } \\ &\lambda = 0.71\\ &\text{Cell parareflect} \\ &\theta = 35.5, \\ &\mu = 0.15\\ &T = 296\\ &\text{Needle}\\ &0.30 \times C\\ &\text{Yellow} \end{aligned}$                                                                                                                        | -C9<br>a-C8<br>a-C8a<br>radiation<br>069 Å<br>immeters from<br>ions<br>5-40.85°<br>9 mm <sup>-1</sup><br>K<br>0.20 × 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m 25                                | $\begin{array}{c} \text{Table 6} \\ \text{N10C4a} \\ \text{N10C10a} \\ \text{C1C2} \\ \text{C1C2} \\ \text{C2C3} \\ \text{C3C4} \\ \text{C4C4a} \\ \text{C4aC4a} \\ \text{C4aC9a} \\ \text{C4aN10N10C4a} \\ \text{C9C8aC9} \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                     | Selected s<br>. Selected s<br>. 1<br>. 1<br>. 1<br>. 1<br>. 1<br>. 1<br>. 1<br>. 1              | 20<br>.3<br>.3<br>.3<br>.4<br>.4<br>.4<br>.4<br>.1<br>.2<br>.2                   |
| Compount<br>$C_{13}H_4F_5N$<br>$M_r = 269$ .<br>$C_{13}H_4F_5N$<br>$M_r = 269$ .<br>Triclinic<br>$P\overline{1}$<br>a = 8.270<br>b = 10.721<br>c = 5.995<br>$\alpha = 102.57$<br>$\beta = 92.60$<br>$\gamma = 83.30$<br>V = 515.2<br>Z = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} \text{(S)} a \\ \text{(C)} a \\ (C$ | 122.6 (5)<br>117.0 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $Mo \ K\alpha \ i \lambda = 0.71$ $Mo \ K\alpha \ i \lambda = 0.71$ $Cell \ para reflect$ $\theta = 35.5$ $\mu = 0.15$ $T = 296$ Needle<br>$0.30 \times C$ Yellow                                                                                                                                                                                                       | -C9<br>a-C8<br>a-C8<br>meters from<br>ions<br>5-40.85°<br>9 mm <sup>-1</sup><br>K<br>0.20 × 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | m 25                                | Table 6         N10C4a         N10C10a         C1C2         C1C9a         C2C3         C3C4         C4C4a         C4aC9a         C4a-N10         N10C4a         C9C8aC9         Compound         Crystal dat         C21H15F3N $M_r = 352$                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Selected s<br>. Selected s<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.          | 3.3<br>3.3<br>4.4<br>4.1<br>22<br>1                                              |
| Compount<br>$C_{13}H_4F_5N$<br>$M_r = 269$ .<br>$C_{13}H_4F_5N$<br>$M_r = 269$ .<br>Triclinic<br>$P\overline{1}$<br>a = 8.270<br>b = 10.721<br>c = 5.995<br>$\alpha = 102.57$<br>$\beta = 92.60$<br>$\gamma = 83.30$<br>V = 515.2<br>Z = 2<br>$D_r = 1.737$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $d (3)$ $ta$ $(5) Å$ $(5) Å$ $(5) Å$ $(5) Å$ $(2) Å$ $(3)^{\circ}$ $(4)^{\circ}$ $(3)^{\circ}$ $(9) Å^{3}$ $5 Mg m^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 122.6 (5)<br>117.0 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mo K $\alpha$ 10<br>N10-C100<br>Mo K $\alpha$ 11<br>$\lambda = 0.711$<br>Cell para<br>reflect<br>$\theta = 35.5$<br>$\mu = 0.15$<br>T = 296<br>Needle<br>$0.30 \times 0$<br>Yellow                                                                                                                                                                                      | -C9<br>a-C8<br>a-C8<br>a<br>meters from<br>ions<br>5-40.85°<br>9 mm <sup>-1</sup><br>K<br>0.20 × 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m 25                                | Table 6         N10C4a         N10C10a         C1C2         C1C9a         C2C3         C3C4         C4aC4a         C4aC9a         C4a-N10         N10C4a         C9C8aC9         Compound         Crystal da         C21H15F3N $M_r = 352$ .         Monoclini                                                                                                                                                                                                                                                                                                                                                                                                                                | Selected $g$<br>. Selected $g$<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.      | 3.3<br>3.3<br>4.4<br>4.3<br>4.4<br>1<br>2<br>2                                   |
| Compount<br>$C_{13}H_4F_5N$<br>$M_r = 269$ .<br>Triclinic<br>$P\overline{1}$<br>a = 8.270<br>b = 10.721<br>c = 5.995<br>$\alpha = 102.57$<br>$\beta = 92.60$<br>$\gamma = 83.30$<br>V = 515.2<br>Z = 2<br>$D_x = 1.733$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $d (3)$ $ta$ $(5) Å$ $(5) Å$ $(5) Å$ $(2) Å$ $(3)^{\circ}$ $(9) Å^{3}$ $5 Mg m^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 122.6 (5)<br>117.0 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mo K $\alpha$ 1<br>N10-C10<br>N10-C10<br>N10-C10<br>N10-C10<br>Needle 0.15<br>T = 296<br>Needle 0.30 × 0<br>Yellow                                                                                                                                                                                                                                                      | -C9<br>a-C8<br>a-C8<br>a<br>meters from<br>ions<br>5-40.85°<br>9 mm <sup>-1</sup><br>K<br>0.20 × 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m 25                                | Table 6         N10C4a         N10C10a         C1C2         C1C9a         C2C3         C3C4         C4aC4a         C4aC9a         C4aN10         N10C4a         C9C8aC0         Compound         C21H15F3N         Mr = 3522.         Monoclinii         P2, /c                                                                                                                                                                                                                                                                                                                                                                                                                               | . Selected s<br>. Selected s<br>. 1<br>. 1<br>. 1<br>. 1<br>. 1<br>. 1<br>. 1<br>. 1            | 30<br>33<br>33<br>44<br>43<br>44<br>11<br>22<br>11                               |
| Compoun<br>$C_{13}H_4F_5N$<br>$M_r = 269$ .<br>Triclinic<br>$P\overline{1}$<br>a = 8.270<br>b = 10.721<br>c = 5.995<br>$\alpha = 102.57$<br>$\beta = 92.60$<br>$\gamma = 83.30$<br>V = 515.2<br>Z = 2<br>$D_x = 1.733$<br>Data colle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $d (3)$ $ta$ $(5) Å$ $(5) Å$ $(5) Å$ $(2) Å$ $(3)^{\circ}$ $(9) Å^{3}$ $5 Mg m^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 122.6 (5)<br>117.0 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mo K $\alpha$ 1<br>$\lambda = 0.71$<br>Cell para<br>reflect<br>$\theta = 35.5$<br>$\mu = 0.15$<br>T = 296<br>Needle<br>$0.30 \times 0$<br>Yellow                                                                                                                                                                                                                        | -C9<br>a-C8<br>a-C8<br>a<br>meters from<br>ions<br>5-40.85°<br>9 mm <sup>-1</sup><br>K<br>0.20 × 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m 25                                | Table 6         N10C4a         N10C10a         C1C2         C1C9a         C2C3         C3C4         C4aC4a         C4aC4a         C4aC4a         C4aC4a         C4aC4a         C2C3         C4aC4a         C4aC4a         C4aC4a         C4aC4a         C9C8aC0         Compound         C21H15F3N         Mr         G21-C1         C3C5         C3C5   | Selected $g$<br>. Selected $g$<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 3.3.3.4<br>4.4<br>12:11                                                          |
| Compoun<br>$C_{13}H_4F_5N$<br>$M_r = 269$ .<br>Triclinic<br>$P\overline{1}$<br>a = 8.270<br>b = 10.721<br>c = 5.995<br>$\alpha = 102.55$<br>$\beta = 92.60$<br>$\gamma = 83.30$<br>V = 515.2<br>Z = 2<br>$D_x = 1.735$<br>Data colle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $d (3)$ $ta$ $(5) Å$ $(5) Å$ $(5) Å$ $(2) Å$ $(2) Å$ $(3)^{\circ}$ $(3)^{\circ}$ $(9) Å^{3}$ $5 Mg m^{-3}$ $ection$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 122.6 (5)<br>117.0 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mo K $\alpha$ 1<br>N10-C10<br>N10-C10<br>Mo K $\alpha$ 1<br>$\lambda$ = 0.71<br>Cell para<br>reflect<br>$\theta$ = 35.5<br>$\mu$ = 0.15<br>T = 296<br>Needle<br>0.30 × 0<br>Yellow                                                                                                                                                                                      | -C9<br>a-C8<br>a-C8<br>a<br>meters from<br>ions<br>5-40.85°<br>9 mm <sup>-1</sup><br>K<br>0.20 × 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m 25                                | Cloa         Table 6         N10C4a         N10C10a         C1C2         C1C9a         C2C3         C3C4         C4aC4a         C4aC9a         C9C8aC9         C0mpoun         C71H15F3N         Mr       = 352.         Monoclinii         P21/c         a = 5.8711         b = 7.9820 | Selected $\xi$<br>. Selected $\xi$<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.  | 30<br>.3<br>.3<br>.4<br>.4<br>.4<br>.4<br>.1<br>.2<br>.1                         |
| Compound<br>$C_{13}H_4F_5N$<br>$M_r = 269$ .<br>Triclinic<br>$P\overline{1}$<br>a = 8.270<br>b = 10.721<br>c = 5.995<br>$\alpha = 102.5$ ;<br>$\beta = 92.60$<br>$\gamma = 83.30$<br>V = 515.2<br>Z = 2<br>$D_x = 1.735$<br>Data colle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $d (3)$ $ta$ $(5) Å$ $(5) Å$ $(5) Å$ $(2) Å$ $(2) Å$ $(3)^{\circ}$ $(3)^{\circ}$ $(9) Å^{3}$ $5 Mg m^{-3}$ $ection$ liffractome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 122.6 (5)<br>117.0 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $Mo \ K\alpha \ i$ $Ni0-C10k$ $Mo \ K\alpha \ i$ $\lambda = 0.71$ $Cell \ para reflect$ $\theta = 35.5.$ $\mu = 0.15$ $T = 296$ $Needle$ $0.30 \times C$ $Yellow$ $\theta_{max} = 2$                                                                                                                                                                                    | -C9<br>a-C8<br>a-C8<br>a<br>meters from<br>ions<br>5-40.85°<br>9 mm <sup>-1</sup><br>K<br>0.20 × 0.20<br>4.99°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m 25                                | Cloa         Table 6         N10C4a         N10C10a         C1C2         C1C9a         C2C3         C3C4         C4aC4a         C4aC4a         C4aC9a         C4aC4a         C9C8aC0         Compound         Crystal da         C2-1H15F3N $M_r$ = 352.         Monoclinii         P21/c         a = 5.871         b = 7.889                                                                                                                                                                                                                                                                                                                                                                 | Selected $g$<br>. Selected $g$<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.      | 30<br>33<br>33<br>44<br>34<br>44<br>11<br>22<br>11                               |
| Compound<br>$C_{13}H_4F_5N$<br>$C_{7}=C8a-CC$<br>Compound<br>$C_{7}ystal da$<br>$C_{13}H_4F_5N$<br>$M_r = 269.$<br>Triclinic<br>$P\overline{1}$<br>a = 8.270<br>b = 10.721<br>c = 5.995<br>$\alpha = 102.5$<br>$\beta = 92.60$<br>$\gamma = 83.30$<br>V = 515.2<br>Z = 2<br>$D_x = 1.733$<br>Data colle<br>AFC-6S d<br>$\omega/2\theta$ scan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $cost = 10^{10} cost = 10^{10} cost$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 122.6 (5)<br>117.0 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{aligned} &\text{Mo } K\alpha \text{ if } \\ &\text{Mo } K\alpha \text{ if } \\ &\lambda = 0.71\\ &\text{Cell parareflect} \\ &\theta = 35.5, \\ &\mu = 0.15\\ &T = 296\\ &\text{Needle}\\ &0.30 \times &\text{C}\\ &\text{Yellow} \end{aligned}$                                                                                                                | -C9<br>a-C8a<br>a-C8a<br>a-C8a<br>a-C8a<br>a-C8a<br>a-C8a<br>a-C8a<br>a-C8a<br>a-C8a<br>b-C8a<br>a-C8a<br>b-C8a<br>a-C8a<br>b-C8a<br>a-C8a<br>b-C8a<br>a-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C8a<br>b-C9a<br>b-C8a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C9a<br>b-C | m 25                                | Cloa         Table 6         N10C4a         N10C10a         C1C2         C1C9a         C2C3         C3C4         C4aC4a         C4aC4a         C4aC4a         C4aC4a         C4aC4a         C4aC4a         C4aC4a         C4aC4a         C4aC4a         C2C8aC0         Compoun         Crystal da         C21H15F3N $M_r$ = 352.         Monoclini         P21/c         a = 5.8711         b = 7.889         c = 34.830         c = 34.830                                                                                                                                                                                                                                                  | Selected $g$<br>. Selected $g$<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 3.3<br>3.4<br>4.4<br>11<br>22<br>11                                              |
| Compound<br>Crystal da<br>Crystal da<br>Crystal da<br>Crystal da<br>Crystal da<br>$C_{13}H_4F_5N$<br>$M_r = 269$ .<br>Triclinic<br>$P\overline{1}$<br>a = 8.270<br>b = 10.721<br>c = 5.995<br>$\alpha = 102.5$<br>$\beta = 92.60$<br>$\gamma = 83.30$<br>V = 515.2<br>Z = 2<br>$D_x = 1.733$<br>Data colle<br>AFC-6S d<br>$\omega/2\theta$ scan<br>Absorption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c) Source $20^{\circ}$<br>c) So                                                                                                                                                                                                                                                                                                                                     | 122.6 (5)<br>117.0 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\theta_{\text{max}} = 2$ $h = 0$                                                                                                                                                                                                                                                                                                                                       | -C9<br>a-C8<br>a-C8a<br>radiation<br>069 Å<br>mmeters from<br>5-40.85°<br>9 mm <sup>-1</sup><br>K<br>0.20 × 0.20<br>4.99°<br>9 9<br>2 → 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m 25                                | Cloa         Table 6         N10C4a         N10C10a         C1C2         C1C9a         C2C3         C3C4         C4aC4a         C4aC9a         C4aN10         N10C4a         C9C8aC0         Compound         Crystal da         C21H15F3N $M_r = 352$ .         Monoclinii         P21/c $a = 5.8711$ $b = 7.889$ $c = 34.830$ $\beta = 91.23$                                                                                                                                                                                                                                                                                                                                               | Selected $g$<br>. Selected $g$<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 3.3<br>.3<br>.4<br>.4<br>.4<br>.3<br>.4<br>.4<br>.1<br>.2<br>.1                  |
| Compound<br>$C_{13}H_4F_5N$<br>$C_{7}=C8a-CC$<br>Compound<br>Crystal da<br>$C_{13}H_4F_5N$<br>$M_r = 269.$<br>Triclinic<br>$P\overline{1}$<br>a = 8.270<br>b = 10.721<br>c = 5.995<br>$\alpha = 102.5$<br>$\beta = 92.60$<br>$\gamma = 83.30$<br>V = 515.2<br>Z = 2<br>$D_x = 1.733$<br>Data colle<br>AFC-6S d<br>$\omega/2\theta$ scan<br>Absorption<br>empiric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | c) Sqa<br>c) Sqa<br>c) Sqa<br>c) Sqa<br>ta<br>ta<br>17<br>(5) Å<br>(1 (5) Å<br>(2) Å<br>6 (3)°<br>(4)°<br>(3)°<br>(9) Å <sup>3</sup><br>5 Mg m <sup>-3</sup><br>ection<br>liffractome<br>s<br>n correctic<br>al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 122.6 (5)<br>117.0 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\theta_{\text{max}} = 2$ $h = 0$ $h = -12$ $h = -6$                                                                                                                                                                                                                                                                                                                    | -C9<br>a-C8<br>a-C8<br>a<br>meters from<br>$5-40.85^{\circ}$<br>9 mm <sup>-1</sup><br>K<br>0.20 × 0.20<br>4.99°<br>9<br>2 → 12<br>→ 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m 25                                | Cloa         Table 6         N10C4a         N10C10a         C1C2         C1C9a         C2C3         C3C4         C4aC4a         C4aC9a         C4aC4a         C4aC4a         C4aC9a         C21H15F3N         Mr = 352.         Monoclini         P21/c         a = 5.871         b = 7.889         c = 34.830 $\beta = 91.23$ V = 1612             | Selected $g$<br>. Selected $g$<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 30<br>.3<br>.3<br>.4<br>.4<br>.4<br>.4<br>.1<br>.2<br>.1                         |
| Compound<br>$C_{13}H_4F_5N$<br>$C_{7}=C8a-CC$<br>Compound<br>Crystal da<br>$C_{13}H_4F_5N$<br>$M_r = 269.$<br>Triclinic<br>$P\overline{1}$<br>a = 8.270<br>b = 10.721<br>c = 5.995<br>$\alpha = 102.5$<br>$\beta = 92.60$<br>$\gamma = 83.30$<br>V = 515.2<br>Z = 2<br>$D_x = 1.733$<br>Data colle<br>AFC-6S d<br>$\omega/2\theta$ scan<br>Absorption<br>empiric<br>$T_{min} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c) Solution<br>c) S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 122.6 (5)<br>117.0 (5)<br>eter<br>on:<br>a = 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\theta_{max} = 2$ $h = 0$ $h = -12$ $h = -6$ $h = -2$ $h = -6$ $h = -2$ $h = -6$ $h = -2$ $h = -6$                                                                                                                                                                                                                                                                     | -C9<br>a-C8<br>a-C8<br>a<br>meters from<br>ions<br>5-40.85°<br>9 mm <sup>-1</sup><br>K<br>0.20 × 0.20<br>4.99°<br>9 9<br>2 → 12<br>→ 6<br>rd reflectio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m 25<br>) mm                        | Table 6<br>N10-C4a<br>N10-C10a<br>C1-C2<br>C1-C9a<br>C2-C3<br>C3-C4<br>C4a-C9a<br>C4a-N10-<br>N10-C4a-<br>C9-C8a-C9<br>Compoun<br>Crystal da<br>C <sub>21</sub> H <sub>15</sub> F <sub>3</sub> N<br>$M_r = 352$ .<br>Monoclini<br>$P2_1/c$<br>a = 5.871<br>b = 7.889<br>c = 34.830<br>$\beta = 91.23$<br>V = 1612<br>Z = 4                                                                                                                                                                                                                                                                                                                                                                    | Selected $g$<br>. Selected $g$<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 30<br>.3<br>.3<br>.4<br>.4<br>.4<br>.4<br>.1<br>.2<br>.1                         |
| Compount<br>Cy=C4a<br>C9-C4a<br>C9-C8a-C<br>Compount<br>Crystal da<br>C <sub>13</sub> H <sub>4</sub> F <sub>5</sub> N<br>$M_r = 269$ .<br>Triclinic<br>$P\overline{1}$<br>a = 8.270<br>b = 10.721<br>c = 5.995<br>$\alpha = 102.5^{\circ}$<br>$\beta = 92.60$<br>$\gamma = 83.30$<br>V = 515.2<br>Z = 2<br>Data colle<br>AFC-6S d<br>$\omega/2\theta$ scan<br>Absorption<br>empiric<br>$T_{min} = (1945 mean)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c) Solution<br>c) S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 122.6 (5)<br>117.0 (5)<br>117.0 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{aligned} & \theta_{max} = 2\\ & h = 0 \\ & h = 0 \\ & h = 0 \end{aligned}$                                                                                                                                                                                                                                                                                      | -C9<br>a-C8<br>a-C8<br>a<br>a-C8<br>a<br>a-C8<br>a<br>a-C8<br>a<br>a-C8<br>a<br>a<br>a-C8<br>a<br>a<br>a-C8<br>a<br>b<br>a<br>b<br>a<br>b<br>a<br>b<br>a<br>b<br>a<br>b<br>a<br>b<br>a<br>b<br>a<br>b<br>a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m 25<br>) mm                        | Table 6<br>N10-C4a<br>N10-C10a<br>C1-C2<br>C1-C9a<br>C2-C3<br>C3-C4<br>C4a-C4a<br>C4a-C9a<br>C4a-N10-<br>N10-C4a-<br>C9-C8a-C9<br>Compoun<br>Crystal da<br>C21H15F3N<br>$M_r = 352$ .<br>Monoclini<br>$P2_1/c$<br>a = 5.871<br>b = 7.889<br>c = 34.830<br>$\beta = 91.23$<br>V = 1612<br>Z = 4<br>$D_x = 1.45$                                                                                                                                                                                                                                                                                                                                                                                | Selected $g$<br>. Selected $g$<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 30<br>.3.3.3.4<br>.4<br>.4<br>.4<br>.4<br>.1<br>.2<br>.1                         |
| Compount<br>$C_{3} - C_{4a} - C_{5} - C_{5a} - C_$                                                                                                                                                                                                                             | c) $Ga$<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>Ca<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22.6 (5)<br>117.0 (5)<br>117.0 (5)<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>etter<br>e | $\begin{array}{l} \text{Mo } K\alpha \text{ fr} \\ \lambda = 0.71\\ \text{Cell para} \\ reflect\\ \theta = 35.5\\ \mu = 0.15\\ T = 296\\ \text{Needle} \\ 0.30 \times \text{C}\\ \text{Yellow} \\ \end{array}$ $\begin{array}{l} \theta_{\text{max}} = 2\\ h = 0 \\ -k = -12\\ l = -6\\ 3 \text{ standa} \\ \text{monit} \\ refl \end{array}$                           | -C9<br>a-C8<br>a-C8a<br>radiation<br>069 Å<br>meters from<br>ions<br>5-40.85°<br>9 mm <sup>-1</sup><br>K<br>0.20 × 0.20<br>4.99°<br>→ 9<br>2 → 12<br>→ 6<br>rd reflectio<br>ored every<br>ections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ns<br>150                           | Table 6<br>N10-C4a<br>N10-C10a<br>C1-C2<br>C1-C9a<br>C2-C3<br>C3-C4<br>C4-C4a<br>C4a-C9a<br>C4a-N10-<br>N10-C4a-<br>C9-C8a-C9<br><b>Compoun</b><br><i>Crystal da</i><br>C <sub>21</sub> H <sub>15</sub> F <sub>3</sub> N<br><i>M<sub>r</sub></i> = 352.<br>Monoclini<br><i>P</i> 2 <sub>1</sub> / <i>c</i><br><i>a</i> = 5.871<br><i>b</i> = 7.889<br><i>c</i> = 34.830<br>$\beta$ = 91.23<br><i>V</i> = 1612<br><i>Z</i> = 4<br><i>D<sub>x</sub></i> = 1.45                                                                                                                                                                                                                                  | Selected $g$<br>. Selected $g$<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 3.3<br>3.3<br>4.4<br>4.1<br>22<br>1                                              |
| Compount<br>$C_{13}H_4F_5N$<br>$M_r = 269$ .<br>$C_{13}H_4F_5N$<br>$M_r = 269$ .<br>$Triclinic P\overline{1}a = 8.270b = 10.721c = 5.995\alpha = 102.5^{\circ}\beta\beta = 92.60\gamma = 83.30V = 515.2Z = 2D_x = 1.733Data colleAFC-6S d\omega/2\theta scanAbsorptionempiricT_{min} = (1945 mear1808 inde951 obser$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c) Solution<br>c) S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22.6 (5)<br>117.0 (5)<br>117.0 (5)<br>117.0 (5)<br>117.0 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{l} \text{Mo } K\alpha = 0\\ \lambda = 0.71\\ \text{Cell para}\\ reflect\\ \theta = 35.5\\ \mu = 0.15\\ T = 296\\ \text{Needle}\\ 0.30 \times C\\ \text{Yellow} \end{array}$ $\begin{array}{l} \theta_{\text{max}} = 2\\ h = 0\\ -k = -12\\ l = -6\\ 3 \text{ standa}\\ \text{monit}\\ refl\\ \text{intense} \end{array}$                                 | -C9<br>a-C8<br>a-C8<br>a<br>meters from<br>ions<br>5-40.85°<br>9 mm <sup>-1</sup><br>K<br>0.20 × 0.20<br>4.99°<br>→ 9<br>2 → 12<br>→ 6<br>rd reflections<br>ity variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ns<br>150<br>n:                     | Table 6<br>N10-C4a<br>N10-C10a<br>C1-C2<br>C1-C9a<br>C2-C3<br>C3-C4<br>C4-C4a<br>C4a-C9a<br>C4a-N10-<br>N10-C4a-<br>C9-C8a-C9<br><b>Compoun</b><br><i>Crystal da</i><br>C <sub>21</sub> H <sub>15</sub> F <sub>3</sub> N<br><i>M<sub>r</sub></i> = 352.<br>Monoclini<br><i>P</i> 2 <sub>1</sub> / <i>c</i><br><i>a</i> = 5.871<br><i>b</i> = 7.889<br><i>c</i> = 34.830<br>$\beta$ = 91.23<br><i>V</i> = 1612<br><i>Z</i> = 4<br><i>D<sub>x</sub></i> = 1.45<br><i>Data colle</i>                                                                                                                                                                                                             | Selected $g$<br>. Selected $g$<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 20<br>33<br>33<br>44<br>34<br>4<br>12<br>21                                      |
| Compount<br>$C_{13}H_4F_5N$<br>$M_r = 269$ .<br>Triclinic<br>$P\overline{1}$<br>a = 8.270<br>b = 10.721<br>c = 5.995<br>$\alpha = 102.55$<br>$\beta = 92.60$<br>$\gamma = 83.30$<br>V = 515.2<br>Z = 2<br>$D_x = 1.733$<br>Data colle<br>AFC-6S d<br>$\omega/2\theta$ scan<br>Absorption<br>empiric<br>$T_{min} = ($<br>1945 mear<br>1808 inde<br>951 obser<br>[I > 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | c) Solution<br>c) S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ter<br>= 1.00<br>ctions<br>effections<br>fions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} \text{Mo } K\alpha \text{ fr} \\ \lambda = 0.71\\ \text{Cell para} \\ reflect \\ \theta = 35.5, \\ \mu = 0.15\\ T = 296\\ \text{Needle} \\ 0.30 \times \text{C} \\ \text{Yellow} \\ \end{array}$ $\begin{array}{c} \theta_{\text{max}} = 2\\ h = 0 \\ -k = -12\\ l = -6\\ 3 \text{ standa} \\ \text{monit} \\ refl\\ \text{intens} \\ -0 \end{array}$ | -C9<br>a-C8<br>a-C8<br>a<br>a-C8<br>a<br>a-C8<br>a<br>a-C8<br>a<br>a-C8<br>a<br>a<br>a-C8<br>a<br>a<br>a-C8<br>a<br>b<br>a<br>b<br>a<br>b<br>a<br>b<br>a<br>b<br>a<br>b<br>a<br>b<br>a<br>b<br>a<br>b<br>a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns<br>150<br>m:                     | Table 6<br>N10-C4a<br>N10-C10a<br>C1-C2<br>C1-C9a<br>C2-C3<br>C3-C4<br>C4-C4a<br>C4a-C9a<br>C4a-N10-<br>N10-C4a-<br>C9-C8a-C9<br><b>Compoun</b><br><i>Crystal da</i><br>C <sub>21</sub> H <sub>15</sub> F <sub>3</sub> N<br><i>M<sub>r</sub></i> = 352.<br>Monoclini<br><i>P</i> 2 <sub>1</sub> / <i>c</i><br><i>a</i> = 5.871<br><i>b</i> = 7.889<br><i>c</i> = 34.830<br>$\beta$ = 91.23<br><i>V</i> = 1612<br><i>Z</i> = 4<br><i>D<sub>x</sub></i> = 1.45<br><i>Data colle</i><br>AFC-65 d                                                                                                                                                                                                 | Selected $g$<br>. Selected $g$<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 20<br>3.3.3.4.4.3.4.4<br>11211                                                   |

| Weighting scheme based on measured e.s.d.'s                |
|------------------------------------------------------------|
| $(\Delta/\sigma)_{\rm max} = 0.08$                         |
| $\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$  |
| $\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$ |
| Atomic scattering factors                                  |
| from International Tables                                  |
| for X-ray Crystallography                                  |
| (1974, Vol. IV)                                            |

# actional atomic coordinates and equivalent ic displacement parameters $(Å^2)$ for (3)

# $U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i . \mathbf{a}_j.$

| 4 (3)          |                   | r                    | ν           |                        | 7                       | Um        |
|----------------|-------------------|----------------------|-------------|------------------------|-------------------------|-----------|
| 2 (2)          | F1                | 0.0478 (3)           | 0.8677      | (2)                    | 0.8655 (4)              | 0.060(1)  |
| 6 (2)          | F7                | 0.0448(3)            | 0.6227      | (2)                    | 0.6302 (5)              | 0.070(1)  |
| 8 (2)          | F3                | 0.1842(3)            | 0 5441 (    | (2)                    | 0.2195 (5)              | 0.075(1)  |
| 5 (2)          | F4                | 0.3292(3)            | 0 7085      | (2)                    | 0.0316(4)               | 0.061(1)  |
| 7 (2)          | F5                | 0.3638 (3)           | 1 4606 (    | (2)                    | 0 6779 (5)              | 0.077(1)  |
| 2 (4)          | N10               | 0.3368 (4)           | 0 9583      | (3)                    | 0.2503 (5)              | 0.039(1)  |
|                | Cl                | 0.1100 (5)           | 0.9385      | (4)                    | 0.6508 (7)              | 0.033(1)  |
| (2)            | C1                | 0.1150(5)            | 0.0200      | (*)<br>(4)             | 0.5463 (8)              | 0.040 (2) |
| (2)            | C2<br>C3          | 0.1103(3)            | 0.7070      | (4)                    | 0.3405 (8)              | 0.030(2)  |
| 7 (6)          | C3                | 0.1692(3)            | 0.0000      | (4)                    | 0.3290(7)               | 0.049(2)  |
| 3 (7)          | C4                | 0.2393(3)            | 0.7469      | (4)                    | 0.2505(7)               | 0.040(2)  |
| 1 (7)          | C4a               | 0.2030 (4)           | 1 1661      | (4)                    | 0.3510 (0)              | 0.039(2)  |
| 7 (7)          | C5                | 0.4123(3)            | 1.1001      | (4)<br>(4)             | 0.2348 (7)              | 0.043(2)  |
| 1 (7)          | C0                | 0.4167(3)            | 1.2099      | (4)                    | 0.3330 (8)              | 0.049(2)  |
| 7 (7)          |                   | 0.3313(3)            | 1.3330      | (4)                    | 0.5780 (8)              | 0.031(2)  |
| 3 (7)          |                   | 0.2606(3)            | 1.2021      | (4)<br>(4)             | 0.0903(0)               | 0.047 (2) |
| 2 (7)          | Coa               | 0.2713 (4)           | 1.1510      | (4)                    | 0.3847 (0)              | 0.039(2)  |
| 4 (7)          | 09                | 0.1989 (5)           | 1.0464      | (4)                    | 0.0838 (8)              | 0.042 (2) |
| 0 (4)          | C9a               | 0.1931 (4)           | 0.9204      | (4)                    | 0.5722 (6)              | 0.038 (2) |
| 9 (4)<br>5 (5) | C10a              | 0.3385 (4)           | 1.0812      | (4)                    | 0.3625 (6)              | 0.038 (2) |
| 5 (5)<br>6 (5) | Table 6.          | Selected             | l geometric | : param                | eters (Å, °             | ) for (3) |
|                | N10 C4a           |                      | 1 226 (4)   | C5 C6                  |                         | 1 344 (6) |
|                | N10C4a            |                      | 1.330 (4)   | C5 C10                 | 0                       | 1.344 (0) |
|                | NIU-CIUa          |                      | 1.343 (3)   | C = C I 0              | a                       | 1.429 (3) |
|                | C1 - C2           |                      | 1.334 (3)   | $\mathcal{C}$          |                         | 1.412(0)  |
|                | $C_1 - C_{9a}$    |                      | 1.421 (5)   |                        |                         | 1.338(0)  |
|                | $C_2 - C_3$       |                      | 1.413(0)    | $-c_0$                 |                         | 1.420(0)  |
|                | $C_3 - C_4$       |                      | 1.336 (3)   | Coa-Cy                 | 0                       | 1.397 (3) |
|                | C4                |                      | 1.432 (5)   | $c_{0a} - c_{1}$       | Ua                      | 1.434 (3) |
|                | C4aC9a            |                      | 1.435 (5)   | C9-C9a                 |                         | 1.379(3)  |
|                | C4a-N10-0         | C10a                 | 117.5 (3)   | C8aC9                  | C9a                     | 120.1 (4) |
|                | N10-C4a-0         | C9a                  | 123.5 (3)   | C4aC9                  | a—C9                    | 117.9 (3) |
|                | C9—C8a—C          | 10a                  | 117.4 (4)   | N10-C1                 | 0a—C8a                  | 123.5 (4) |
|                | Compour           | d (4)                |             |                        | •                       |           |
| 1              | Compoun           | u (+)                |             |                        |                         |           |
|                | Crystal da        | ta                   |             |                        |                         |           |
|                | C21H15F3N         | 12                   |             | Μο Κα                  | radiation               |           |
|                | $M = 352^{\circ}$ | 36                   |             | $\lambda = 0.7$        | 1069 Å                  |           |
|                | $W_{r} = 552.$    | 50                   |             | C-11                   |                         | 20        |
|                | Monoclini         | c                    |             | Cell pa                | rameters fro            | om 20     |
|                | $P2_{1}/c$        |                      |             | reflec                 | ctions                  |           |
|                | a = 5 871         | (A) Å                |             | $\theta = 14.$         | 99-23.39°               |           |
|                | u = 5.871         |                      |             | u = 0.1                | $04 \text{ mm}^{-1}$    |           |
|                | b = 7.889         | (3) A                |             | $\mu = 0.1$            |                         |           |
|                | c = 34.830        | ) (9) Å              |             | T = 290                | 5 K                     |           |
|                | $\beta = 91.23$   | (À)°                 |             | Plate                  |                         |           |
|                | V = 1612          | à 13                 |             | $0.40 \times$          | $0.35 \times 0.1$       | 5 mm      |
|                | v = 1012          | $(2) \mathbf{A}^{-}$ |             | Dolo rio               | 1100                    |           |
|                | Z = 4             |                      |             | rale ye                | now                     |           |
|                | $D_x = 1.45$      | 1 Mg m <sup>-3</sup> | 3           |                        |                         |           |
|                | Data colle        | ction                |             |                        |                         |           |
|                | AEC 65 A          | iffractome           | ter         | $R_{1} = 0$            | 070                     |           |
|                | Arc-03 0          |                      |             | $\Lambda_{int} = 0$    | 1070<br>15 <sup>0</sup> |           |
|                | $\omega$ scans w  | iin profile          | anaiysis    | $\sigma_{\rm max} = 2$ | 23-                     |           |

Absorption correction: refined from  $\Delta F$  (*DI*-*FABS*; Walker & Stuart, 1983)  $T_{min} = 0.83$ ,  $T_{max} = 1.18$ 3372 measured reflections 3049 independent reflections 1317 observed reflections  $[I > 3\sigma(I)]$ 

#### Refinement

Refinement on F R = 0.068 wR = 0.066 S = 4.251317 reflections 283 parameters All H-atom parameters refined except H on methyl C18, fixed  $h = 0 \rightarrow 6$   $k = 0 \rightarrow 20$   $l = -40 \rightarrow 40$ 3 standard reflections monitored every 150 reflections intensity variation: 1.09%

Weighting scheme based on measured e.s.d.'s  $(\Delta/\sigma)_{max} = 0.081$  $\Delta\rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$  $\Delta\rho_{min} = -0.33 \text{ e} \text{ Å}^{-3}$ Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

...

Table 7. Fractional atomic coordinates and equivalentisotropic displacement parameters (Å<sup>2</sup>) for (4)

$$U_{\text{eq}} = (1/3) \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$$

|          | x          | у           |          | Z          | $U_{ea}$  |
|----------|------------|-------------|----------|------------|-----------|
| Fl       | 0.9691 (6) | 0.0290 (    | 5) 0.5   | 589 (1)    | 0.050 (2) |
| F2       | 0.8437 (6) | 0.0300 (    | 6) 0.6   | 321 (1)    | 0.052 (2) |
| F4       | 0.1739 (6) | 0.3322 (    | 6) 0.5   | 990 (1)    | 0.046 (2) |
| N10      | 0.2821 (9) | 0.3259 (    | 8) 0.5   | 232 (2)    | 0.034 (3) |
| N11      | 0.439 (1)  | 0.1846 (    | 10) 0.6  | 548 (2)    | 0.049 (4) |
| C1       | 0.772 (1)  | 0.1084 (    | 10) 0.5  | 679 (2)    | 0.037 (4) |
| C2       | 0.712 (1)  | 0.1089 (    | 10) 0.6  | 054 (2)    | 0.039 (4) |
| C3       | 0.507 (1)  | 0.191 (1    | ) 0.6    | 173 (2)    | 0.037 (4) |
| C4       | 0.372 (1)  | 0.2570 (    | 9) 0.5   | 884 (2)    | 0.029 (3) |
| C4a      | 0.426 (1)  | 0.2579 (    | 9) 0.5   | 487 (2)    | 0.033 (4) |
| C5       | 0.194 (1)  | 0.393 (1    | ) 0.4    | 576 (2)    | 0.037 (4) |
| C6       | 0.247 (1)  | 0.388 (1    | ) 0.4    | 193 (2)    | 0.044 (4) |
| C7       | 0.453 (1)  | 0.315 (1    | ) 0.4    | 060 (2)    | 0.041 (4) |
| C8       | 0.603 (1)  | 0.2495 (    | 10) 0.4  | 334 (2)    | 0.037 (4) |
| C8a      | 0.553 (1)  | 0.2499 (    | 9) 0.4   | 724 (2)    | 0.032 (4) |
| C9       | 0.696 (1)  | 0.1795 (    | 10) 0.5  | 006 (2)    | 0.034 (4) |
| C9a      | 0.637 (1)  | 0.1806 (    | 9) 0.5   | 387 (2)    | 0.032 (4) |
| C10a     | 0.341 (1)  | 0.3228 (    | 10) 0.4  | 855 (2)    | 0.033 (4) |
| C12      | 0.580 (1)  | 0.2243 (    | 10) 0.6  | 867 (2)    | 0.039 (4) |
| C13      | 0.785 (1)  | 0.309 (1    | ) 0.6    | 846 (3)    | 0.046 (5) |
| C14      | 0.918 (1)  | 0.345 (1)   | ) 0.7    | 160 (3)    | 0.046 (4) |
| C15      | 0.853 (1)  | 0.295 (1    | ) 0.7    | 528 (2)    | 0.042 (4) |
| C16      | 0.646 (1)  | 0.211 (1)   | ) 0.7    | 553 (2)    | 0.050 (5) |
| C17      | 0.512(1)   | 0.175 (1    | ) 0.7    | 235 (2)    | 0.043 (4) |
| C18      | 1.002 (1)  | 0.330 (1)   | ) 0.7    | 882 (3)    | 0.069 (5) |
| C19      | 0.507 (2)  | 0.317 (2    | ) 0.3    | 649 (3)    | 0.066 (6) |
| Table 8  | . Selected | d geometric | paramete | ers (Å, °) | ) for (4) |
| N10—C4a  |            | 1.326 (7)   | C5-C6    |            | 1.37 (1)  |
| N10-C10a |            | 1.366 (8)   | C5-C10a  |            | 1.403 (9) |
| N11-C3   |            | 1.375 (9)   | C6—C7    |            | 1.43 (1)  |
| N11-C12  |            | 1.408 (9)   | C7-C8    |            | 1.39 (1)  |
| C1-C2    |            | 1.36 (1)    | C7-C19   |            | 1.48 (1)  |
| C1C9a    |            | 1.401 (9)   | C8—C8a   |            | 1.40(1)   |
| C2—C3    |            | 1.43 (1)    | C8aC9    |            | 1.394 (9) |
| C3C4     |            | 1.372 (9)   | C8a-C10a |            | 1.449 (9) |
| C4—C4a   |            | 1.421 (8)   | C9—C9a   |            | 1.379 (9) |
| C4a—C9a  |            | 1.432 (9)   |          |            |           |

The crystals of (2) were extremely thin and a rotating-anode source had to be used. Data collection: MSC/AFC Diffractome-

C8a-C9-C9a

C4a-C9a-C9

N10-C10a-C8a

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved

117.8 (6)

123.3 (7)

116.4 (7)

C4a-N10-C10a

N10-C4a-C9a

C9-C8a-C10a

ter Control Software (Molecular Structure Corporation, 1988). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN PROCESS (Molecular Structure Corporation, 1985). Program(s) used to solve structure: TEXSAN, MITHRIL (Gilmore, 1984). Program(s) used to refine structure: TEXSAN LS. Molecular graphics: TEXSAN, PLUTO (Motherwell & Clegg, 1978). Software used to prepare material for publication: TEXSAN FINISH. Literature survey: CSSR (1984).

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the IUCr (Reference: HA1078). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

#### References

- Adamson, A. J., Banks, R. E. & Tipping A. E. (1993). J. Fluorine Chem. 64, 5-10.
- Alty, A. C., Banks, R. E., Fishwick, B. R., Pritchard, R. G. & Thompson, A. R. (1984). J. Chem. Soc. Chem. Commun. pp. 832-833.
- Alty, A. C., Banks, R. E., Fishwick, B. R. & Thompson, A. R. (1985). Tetrahedron Lett. pp. 1345–1348.
- CSSR (1984). Crystal Structure Search and Retrieval Instruction Manual. SERC Daresbury Laboratory, Warrington, England.

Flowers, W. T. & DeFigueredo, P. (1990). Personal communication. Gilmore, C. J. (1984). J. Appl. Cryst. 17, 42-46.

- Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

Motherwell, W. D. S. & Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. Univ. of Cambridge, England. Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1994). C50, 971-974

# **3-Selenocyanatopyridine**

S. J. DUNNE, L. A. SUMMERS AND

E. I. VON NAGY-FELSOBUKI

Department of Chemistry, The University of Newcastle, Callaghan, NSW 2308, Australia

# M. F. MACKAY

Department of Chemistry, La Trobe University, Bundoora, Victoria 3083, Australia

(Received 11 October 1993; accepted 13 December 1993)

#### Abstract

120.9 (7)

118.4 (6)

123.1 (6)

The crystal structure of the title compound (3-pyridyl selenocyanate,  $C_6H_4N_2Se$ ) has been determined by X-ray analysis. As expected, the Se- $C_{sp}$  bond of length